145 research outputs found

    The relation between sea ice thickness and freeboard in the Arctic

    Get PDF
    Retrieval of Arctic sea ice thickness from CryoSat-2 radar altimeter freeboard data requires observational data to verify the relation between these two variables. In this study in-situ ice and snow data from 689 observation sites, obtained during the Sever expeditions in the 1980s, have been used to establish an empirical relation between thickness and freeboard of FY ice in late winter. Estimates of mean and variability of snow depth, snow density and ice density were produced on the basis of many field observations. These estimates have been used in the hydrostatic equilibrium equation to retrieve ice thickness as a function of ice freeboard, snow depth and snow/ice density. The accuracy of the ice thickness retrieval has been calculated from the estimated variability in ice and snow parameters and error of ice freeboard measurements. It is found that uncertainties of ice density and freeboard are the major sources of error in ice thickness calculation. For FY ice, retrieval of ≈ 1.0 m (2.0 m) thickness has an uncertainty of 46% (37%), and for MY ice, retrieval of 2.4 m (3.0 m) thickness has an uncertainty of 20% (18%), assuming that the freeboard error is ± 0.03 m for both ice types. For MY ice the main uncertainty is ice density error, since the freeboard error is relatively smaller than that for FY ice. If the freeboard error can be reduced to 0.01 m by averaging measurements from CryoSat-2, the error in thickness retrieval is reduced to about 32% for a 1.0 m thick FY floe and to about 18% for a 2.4 m thick MY floe. The remaining error is dominated by uncertainty in ice density. Provision of improved ice density data is therefore important for accurate retrieval of ice thickness from CryoSat-2 data

    Observations of internal waves generated by an anticyclonic eddy: a case study in the ice edge region of the Greenland Sea

    Get PDF
    Internal waves in the ocean play an important role in turbulence generation due to wave-breaking processes and mixing of the ocean. Airborne radar images of internal waves and ocean eddies north of Svalbard suggested that ocean eddies could generate internal waves. Here, we test this hypothesis using data from a dedicated internal wave experiment in the Greenland Sea. Internal waves with dominant frequencies of 1–3 cycles per hour and amplitudes up to 15 m were observed using three thermistor chains suspended from a drifting array conveniently placed on the ice in a triangle with sides of several km. Analysis shows that internal waves propagated westwards with a speed of about 0.2 m/s and wavelength of 0.4–1.0 km, away from an anticyclonic ocean eddy located just east of the array. This was consistent with the remote-sensing observations of internal waves whose surface signature was imaged by an airborne radar in the western part of this eddy, and with theories that eddies and vortexes can directly generate internal waves. This case study supports our hypothesis that ocean eddies can be the direct sources of internal waves reported here for the first time and not only enhancing the local internal wave field by draining energy from the eddies, as studied previously. The present challenge is to explore the role of eddies as a new source in generating internal waves in the global ocean

    Uncertainty information in climate data records from Earth observation

    Get PDF
    Climate data records (CDRs) derived from Earth observation (EO) should include rigorous uncertainty information, to support application of the data in policy, climate modelling and numerical weather prediction reanalysis. Uncertainty, error and quality are distinct concepts, and CDR products should follow international norms for presenting quantified uncertainty. Ideally, uncertainty should be quantified per datum in a CDR, and the uncertainty estimates should be able to discriminate more and less certain data with confidence. In this case, flags for data quality should not duplicate uncertainty information, but instead describe complementary information (such as the confidence held in the uncertainty estimate provided, or indicators of conditions violating retrieval assumptions). Errors have many sources and some are correlated across a wide range of time and space scales. Error effects that contribute negligibly to the total uncertainty in a single satellite measurement can be the dominant sources of uncertainty in a CDR on large space and long time scales that are highly relevant for some climate applications. For this reason, identifying and characterizing the relevant sources of uncertainty for CDRs is particularly challenging. Characterisation of uncertainty caused by a given error effect involves assessing the magnitude of the effect, the shape of the error distribution, and the propagation of the uncertainty to the geophysical variable in the CDR accounting for its error correlation properties. Uncertainty estimates can and should be validated as part of CDR validation, where possible. These principles are quite general, but the form of uncertainty information appropriate to different essential climate variables (ECVs) is highly variable, as confirmed by a quick review of the different approaches to uncertainty taken across different ECVs in the European Space Agency’s Climate Change Initiative. User requirements for uncertainty information can conflict with each other, and again a variety of solutions and compromises are possible. The concept of an ensemble CDR as a simple means of communicating rigorous uncertainty information to users is discussed. Our review concludes by providing eight recommendations for good practice in providing and communicating uncertainty in EO-based climate data records

    Why do we need a theory and metrics of technology upgrading?

    Get PDF
    This paper discusses why we need theory and metrics of technology upgrading. It critically reviews the existing approaches to technology upgrading and motivates build-up of theoretically relevant but empirically grounded middle level conceptual and statistical framework which could illuminate a type of challenges relevant for economies at different income levels. It conceptualizes technology upgrading as three dimensional processes composed of intensity and different types of technology upgrading through various types of innovation and technology activities; broadening of technology upgrading through different forms of technology and knowledge diversification, and interaction with global economy through knowledge import, adoption and exchange. We consider this to be necessary first step towards theory and metrics of technology upgrading and generation of more relevant composite indicator of technology upgrading

    Multipurpose acoustic networks in the integrated arctic ocean observing system

    Get PDF
    The dramatic reduction of sea ice in the Arctic Ocean will increase human activities in the coming years. This activity will be driven by increased demand for energy and the marine resources of an Arctic Ocean accessible to ships. Oil and gas exploration, fisheries, mineral extraction, marine transportation, research and development, tourism, and search and rescue will increase the pressure on the vulnerable Arctic environment. Technologies that allow synoptic in situ observations year-round are needed to monitor and forecast changes in the Arctic atmosphere-ice-ocean system at daily, seasonal, annual, and decadal scales. These data can inform and enable both sustainable development and enforcement of international Arctic agreements and treaties, while protecting this critical environment. In this paper, we discuss multipurpose acoustic networks, including subsea cable components, in the Arctic. These networks provide communication, power, underwater and under-ice navigation, passive monitoring of ambient sound (ice, seismic, biologic, and anthropogenic), and acoustic remote sensing (tomography and thermometry), supporting and complementing data collection from platforms, moorings, and vehicles. We support the development and implementation of regional to basin-wide acoustic networks as an integral component of a multidisciplinary in situ Arctic Ocean observatory

    Связь крупномасштабной изменчивости поля дрейфа льда в Северном Ледовитом океане с климатическими изменениями общей ледовитости, происходящими в течение последних десятилетий

    Get PDF
    Discusses the relationship of a large-scale field variability of drift ice in the Arctic Ocean with a climate change total sea ice extent, occurring in recent decades, based on a unique data set of daily drift fields derived from remote sensing data analysis. Analysis of vector fields of the sea ice drift is done using vector-algebraic method that allows to significantly compress the initial information and describe the vector fields by a limited set of scalar parameters. The joint analysis of the variability of drift field and changes in atmospheric circulation types was carried out within the framework of the classification of large-scale atmospheric processes in theArcticby Vangengeim-Girs-Dydina. It was shown that the predominant circulating type now (B type) contributes to the creation of conditions for ice buildup.Рассматривается связь крупномасштабной изменчивости поля дрейфа льда в Северном Ледовитом океане с климатическими изменениями общей ледовитости, происходящими в течение последних десятилетий, на основе уникального массива данных ежедневных полей дрейфа, полученных в результате анализа данных дистанционного зондирования Земли. Анализ векторных полей дрейфа морского льда выполняется с использованием векторноалгебраического метода, который позволяет существенно сжимать исходную информацию и описывать векторные поля ограниченным набором скалярных параметров. Совместный анализ изменчивости полей дрейфа и изменений типа атмосферной циркуляции выполнялся в рамках классификации крупномасштабных атмосферных процессов в Арктике Вангенгейма–Гирса– Дыдиной. Показано, что преобладающий в настоящее время тип циркуляции (Б) способствует созданию условий для нарастания льда

    Blood culture collection technique and pneumococcal surveillance in Malawi during the four year period 2003–2006: an observational study

    Get PDF
    BACKGROUND: Blood culture surveillance will be used for assessing the public health effectiveness of pneumococcal conjugate vaccines in Africa. Between 2003 and 2006 we assessed blood culture outcome and performance in adult patients in the central public hospital in Blantyre, Malawi, before and after the introduction of a dedicated nurse led blood culture team. METHODS: A prospective observational study. RESULTS: Following the introduction of a specialised blood culture team in 2005, the proportion of contaminated cultures decreased (19.6% in 2003 to 5.0% in 2006), blood volume cultured increased and pneumococcal recovery increased significantly from 2.8% of all blood cultures to 6.1%. With each extra 1 ml of blood cultured the odds of recovering a pneumococcus increased by 18%. CONCLUSION: Standardisation and assessment of blood culture performance (blood volume and contamination rate) should be incorporated into pneumococcal disease surveillance activities where routine blood culture practice is constrained by limited resources

    Diagnosis of invasive candidiasis in the ICU

    Get PDF
    Invasive candidiasis ranges from 5 to 10 cases per 1,000 ICU admissions and represents 5% to 10% of all ICU-acquired infections, with an overall mortality comparable to that of severe sepsis/septic shock. A large majority of them are due to Candida albicans, but the proportion of strains with decreased sensitivity or resistance to fluconazole is increasingly reported. A high proportion of ICU patients become colonized, but only 5% to 30% of them develop an invasive infection. Progressive colonization and major abdominal surgery are common risk factors, but invasive candidiasis is difficult to predict and early diagnosis remains a major challenge. Indeed, blood cultures are positive in a minority of cases and often late in the course of infection. New nonculture-based laboratory techniques may contribute to early diagnosis and management of invasive candidiasis. Both serologic (mannan, antimannan, and betaglucan) and molecular (Candida-specific PCR in blood and serum) have been applied as serial screening procedures in high-risk patients. However, although reasonably sensitive and specific, these techniques are largely investigational and their clinical usefulness remains to be established. Identification of patients susceptible to benefit from empirical antifungal treatment remains challenging, but it is mandatory to avoid antifungal overuse in critically ill patients. Growing evidence suggests that monitoring the dynamic of Candida colonization in surgical patients and prediction rules based on combined risk factors may be used to identify ICU patients at high risk of invasive candidiasis susceptible to benefit from prophylaxis or preemptive antifungal treatment
    corecore